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Abstract

In this paper we investigate the nonuniform and localized deformation of a polycrystalline aggregate under plane-
strain tension. A finite element analysis based on rate-dependent crystal plasticity has been developed to simulate large
strain behaviour. Each material point in the specimen is considered to be a polycrystalline aggregate of a large number
of FCC grains. The Taylor theory of crystal plasticity is assumed. This analysis accounts for initial textures, as well as
texture evolution during large plastic deformations. The numerical analysis incorporates certain parallel computing
features. Simulations have been carried out for a commercial aluminium sheet alloy (AA3004-H19), and the effects of
various parameters on the formation and prediction of localized deformation (in the form of necking and/or shear
bands) are examined. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In early stages of tensile straining, polycrystal aggregates of ductile metals and alloys exhibit defor-
mation patterns which, on a macroscopic scale are essentially homogeneous. With continued straining,
however, the homogeneous deformation pattern is observed to change to a nonhomogeneous one, generally
through the onset of diffuse necking (Hutchinson and Neale, 1977, 1978a,b) and/or localized shearing
(Peirce et al., 1982). Failure usually ensues either by necking down to a ‘chisel edge’ or by rupture within
intense shear bands.

There are two main methods of analysis for plastic instability predictions. For a rate-insensitive solid,
plastic instability occurs either as a bifurcation state for a perfect specimen or as an imperfection-triggered
localization. For rate-sensitive materials, bifurcation is effectively excluded, but small material inhomo-
geneities can still result in localization. In the limit of low material rate sensitivity, the localization strain
predicted for a given initial inhomogeneity is practically identical to that predicted for the corresponding
rate-insensitive solid, while for high-rate sensitivity, localization is retarded considerably.
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Peirce et al. (1982) presented finite element (FE) calculations for nonuniform deformation modes in
ductile single crystals, based on a rate-independent constitutive model for crystallographic slip. Their
analysis, however, highlighted inherent limitations of the rate-independent idealization of crystalline slip.
As a result of these limitations, Peirce et al. (1983) presented the constitutive theory for crystalline slip for
rate-dependent material response and simulated large strain tension tests of single crystals. Their results
provided a general understanding of the roles of rate sensitivity and lattice kinematics in the development of
localized modes of deformation.

More recently, Zikry and Nemat-Nasser (1990) have studied numerically the phenomenon of shear
banding in a FCC single crystal undergoing plane-strain tensile deformations at high strain rates. Harren
et al. (1988) have analysed shear band formation during plane-strain compression of single crystals and
polycrystals. The problem of the initiation and growth of dynamic shear bands in a FCC single crystal
deformed in simple compression was presented by Zhu and Batra (1993).

Simulations with single crystals provide some understanding into the micromechanics of localized de-
formation in polycrystalline materials. However, the common metals of industrial practice are polycrys-
talline aggregates and there are few FE analyses for polycrystals (especially analyses based on Taylor
assumptions) due to their significantly large computational requirements.

In this paper, the nonuniform deformation of polycrystals subjected to plane-strain tension has
been simulated using a polycrystal model-based FE code. Many researchers (Harren and Asaro, 1989a;
Kalidindi et al., 1991; Kaidindi and Anand, 1994) have shown that the Taylor model for polycrystalline
materials is in reasonably good agreement with experiments, both for the evolution of textures as well as for
the overall stress—strain response of single-phase FCC materials. For this reason, and also for its relative
simplicity in computations, a Taylor-type polycrystal model has been implemented into our FE code. The
FE analysis incorporates certain parallel computing algorithms to distribute data between the processors of
an IBM SP3 parallel computer. We first recapitulate the polycrystal constitutive model employed. Then the
FE formulation is briefly presented. In the last section we present results for a commercial aluminium sheet
alloy (AA3004-H19), and discuss the effects of various parameters on the formation of localized defor-
mation bands.

2. Constitutive model

The polycrystal plasticity model described by Asaro and Needleman (1985) and employed by Wu et al.
(1996a) is used in our analysis. Accordingly, the total deformation of a crystallite is the result of two distinct
physical mechanisms: crystallographic slip due to dislocation motion on the active slip systems, and elastic
lattice distortion. Within a FCC crystal, plastic deformation occurs by crystallographic slip on the 12
{111}(110) slip systems where the slip planes are the {111} crystallographic planes with normals m, and
the (110) directions are the shear directions with slip vectors s. Plastic deformation is envisaged to occur as
a set of plastic simple shears along the various slip systems, leaving the lattice and the slip system vectors
(8(x)» m(,)) not only essentially undistorted, but also unrotated. (The brackets for the subscripts o indicate
that o is not a tensor index and ranges from one to the total number of slip systems.) Next, the material and
lattice are considered to deform elastically and rotate rigidly from the plastically deformed state to the
current configuration.

The deformation gradient F is written as:

F=FFP° (1)
where FP consists solely of crystallographic slipping along the specific slip systems, while the elastic de-

formation and any rigid body rotation is embodied in F*. From Eq. (1), the spatial gradient of velocity can
be written as
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L=FF'=L+1L° (2)

where

=FF', LP=F(FF)F' 3)
Taking symmetric and antisymmetric parts of the above relations leads to the elastic and plastic strain rates
D* and DP, the so-called plastic spin WP, and the spin W* associated with the rigid lattice rotation

D =D+ D, W =W+ WP (4)

The vectors s(,) and my, are regarded as lattice vectors so that they stretch and rotate by
~1

Sty = 80, m?) =mgF” (5)

o
By introducing the following symmetric and skewsymmetric tensors for each slip system o

Py =3[s(, @ mi, +m, @s,] (6)

the plastic strain rate and spin for the crystal can be respectively written as
D? = ZP<1)5’(a)7 we = ZW(D/.))"@ (8)

where y,,) is the shear rate on the slip system o.
The elastic constitutive equation for a crystal is specified by

v
T =t—Wrt+W =LD" 9)

where ;‘ is the Jaumann rate of the Kirchhoff stress tensor t based on the lattice rotations, and L is the
tensor of the elastic moduli. These moduli are based on the anisotropic elastic constants of the FCC crystals
and thus exhibit the appropriate cubic symmetry.

In order to express the constitutive relation (9) in terms of the Jaumann rate & of the Cauchy stress
o = det(F) 'z, based on the continuum slip W, we introduce a second-order tensor R, for each slip system
as follows

R =LPy + Wyo—aW, (10)
Using Egs. (4)—(8) and (10), the constitutive law (9) can be rewritten in the form

6=LD—5"—otrD (11)

where 6° is a viscoplastic type stress rate defined by

6" =) Ry (12)
The slip rates to be substituted into Eq. (12) are taken to be governed by the power law expression

Vo) = V(0) SENT(w) ) " (13)

&(2)

where 7, is a reference shear rate taken to be the same for all the slip systems, 7(,) = P(,:0 is the resolved
shear stress on slip system o; g,), its hardness and m, the strain-rate sensitivity index. The g, characterize
the current strain-hardened state of all slip systems. The rate of increase of the function g, is deﬁned by the
hardening law:
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g = ) _haplip) (14)
il

where g(,)(0) is the initial hardness, taken to be a constant 7, for each slip system, and 4, are the hardening
moduli. The form of these moduli is

hup) = qophp  (no sum on fB) (15)

where Ay is a single slip hardening rate and g,y is the matrix describing the latent hardening behaviour of
the crystallite.

Asaro and Needleman (1985), among others, simply take each g, to depend on the accumulated sum,
7., Of the slips; i.e.

t
0 = 2w, Y= / S il de (16)

Based on measurements of strain hardening of single crystals of aluminium alloys by Chang and Asaro
(1981), the following slip hardening rate was used by Asaro and coworkers:

hﬁhSJr(hohs)sech2{<h0_hs)ya} (17)

Ts — 70

where 4y and Ay are the system’s initial and asymptotic hardening rates. If 4, = 0, then 7, represents the
saturation value of the shear stress.

The response of a polycrystal comprised of many grains is obtained by invoking the Taylor assumption.
Thus, at a material point representing a polycrystal of N grains, the deformation in each grain is taken to be
identical to the macroscopic deformation of the continuum. Furthermore, the macroscopic values of all
quantities, such as stresses, stress rates and elastic moduli, are obtained by averaging their respective values
over the total number of grains at the particular material point.

3. Finite element implementation

A FE procedure based on a Lagrangian formulation of the field equations using convected coordinates
has been developed. Thus if g, are the base vectors in the undeformed configuration corresponding to the
convected coordinates x; the deformed base vectors are G; = Fg,. The initial, undeformed configuration of
the body with volume V" and surface S is used as a reference. Then, for quasi-static deformations and in the
absence of body forces, the equilibrium equations are expressed through the virtual work condition

/‘[ijﬁmjdV:/TiSuidS (18)
v N

for arbitrary variations of the displacement components u; and corresponding variations of the components
n,; of the Lagrangian strain tensor. Here, 7 are the components on the undeformed basis of the second
Piola—Kirchhoff tensor and 7* are the corresponding traction vectors.

In the linear incremental problem, we suppose the current state of approximate equilibrium to be known
at time 7. To determine the equations for the field quantity rates, Eq. (18) is expanded in a Taylor series
about the time 7 to yield (Needleman and Tvergaard, 1984)

At / (f"f‘esn,.,+rffa{;6uk,_,)dr/= At / 7' Su;dS — { / o3, dV — / T"asuids} (19)
4 S Vv S

The last term on the right of Eq. (19) serves as an equilibrium correction if equilibrium in the current
state is only approximate.



K. Inal et al. | International Journal of Solids and Structures 39 (2002) 983-1002 987

3.1. Problem formulation

A specimen submitted to uniaxial tension has been modelled under the assumption of plane-strain
conditions. The initial length of the specimen is 2L, and its initial thickness is 2(%y + Ahq) where 24 is the
average thickness and 2A#, is the initial thickness inhomogeneity.

When x; and x; are assumed to coincide with the rolling and normal directions of the sheet, respectively,
material orthotropy and symmetry with respect to these axes can be assumed. As a result, only one quarter
of the specimen needs to be considered in the numerical solution (Fig. 1). This mesh consists of four-node
quadrilateral elements, made up of four ‘crossed’ constant strain triangular sub-elements. In presenting
results, the quadrilateral is regarded as the basic element, and when reporting values of the field quantities
the average value of the triangles is associated with the centroid of the quadrilateral (Wu and Van der
Giessen, 1996b).

With the tensile axis aligned in the x; direction, the boundary conditions on the quadrant are

M3:O atx3:()
M]ZO atx1:O

u; = V (applied velocity) at x; = Lg 2

and the end of the specimen; x; = Ly, is considered to be shear free.
The initial thickness imperfection Ak, follows that of Tvergaard et al. (1981), and is given by

Ahy = ho[ — & cos(mx® /L) + &, cos(pnx®/Lo)] (21)

where ¢, and &, are prescribed imperfection amplitudes and p(>1) is the wave number.
3.2. Parallel computing

In general, Taylor-type polycrystal models are ideally suited for the parallelization of the computational
procedures. Especially, when CPU time is considered, the simulations fall in the category of “‘embarrass-
ingly parallel” (Sorensen and Andersen, 1995) applications, and they provide significant computational
improvements. However, such “embarrassingly parallel”” applications are strictly feasible only if the total
program size fits within a single processor of the parallel computer. This was not the case for the simu-
lations presented in this paper, and it was necessary to implement the polycrystal FE model in a data
parallel form as described by Beaudoin et al. (1993).

T X; (ND)

ho

A
A

X; (RD)
I

Fig. 1. FE mesh used in simulations.
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(a) (b)

Fig. 2. Parallel data implementation.

The parallel algorithms used in our simulations are designed to distribute data on the microscopic level
(crystal data) over the processors of an IBM SP3 supercomputer (Inal et al., 2000a). To illustrate this,
consider a simulation with a total number N of crystals (Fig. 2a). The global crystal data is distributed
between the processors (Fig. 2b) such that each processor runs a part of the global program for N /4
crystals where A is the total number of processors used in the simulation.

The macroscopic values of all quantities such as stresses, stress rates and elastic moduli are obtained by
collective communication between the processors using the message passing interface library. As a result,
each processor has its own microscopic data; however, all of the processors have the same macroscopic
data. We should mention that the total number of crystals should be distributed as evenly as possible
between the processors. Otherwise the large difference in the number of crystals per processor adversely
affects the CPU time per processor, and in such cases blocking commands (which are costly in terms of
CPU) are required during communication between processors. To avoid this the parallel algorithms de-
veloped here distribute the crystals as evenly as possible among the available processors.

The parallel computing algorithms which we have developed are essential for the simulations presented
in this paper. These parallel sub-routines enable simulations with sufficiently fine meshes necessary to
capture the key features of localized deformation for the aluminium alloy analysed. Note that, each element
in our simulations has four integration points and each integration point is considered to represent a
polycrystal aggregate comprised of 380 grains. For this case, the maximum number of elements that can be
used in a simulation with a sequential computer such as an IBM RISC 6000 is 35 while the majority of the
simulations (performed on the IBM SP3 parallel computer) presented in this paper consist of 768 elements.

4. Results and discussion

The initial texture (represented by 380 crystals) of the aluminium sheet alloy AA3004-H19 is presented in
Fig. 3. Here X1, X; and X; refer to the rolling, transverse and the normal directions of the sheet, respectively.
Various studies have been presented investigating the significance of the number of grains used to represent
an initial texture (Harren et al., 1989b; Van der Giessen and Neale, 1993; Wu et al., 1997). The initial
texture used in this study was provided by the Kingston Research and Development Centre of Alcan In-
ternational, where a representation of 380 grains was considered to be sufficient to capture the components
of a typical rolling texture and to assure orthotropic material symmetry.

The values of the material properties used in the simulations are,

T =95 MPa, hy/to=12, t/to=1.16, h/19=0, gq=10 (22)

These properties were obtained by fitting the uniaxial stress—strain curve obtained by crystal plasticity to
the uniaxial stress—strain curve measured experimentally (Inal et al., 2000b). The slip system reference
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Fig. 3. Initial texture of AA3004-H19 represented by {111} stereographic pole figure.

plastic shearing rate 7, and the slip rate sensitivity parameter m are taken as y, = 0.001 s~! and m = 0.002,
respectively with the crystal elastic constants taken as C;; = 206 GPa, Cj; = 118 GPa and Cy = 54 GPa.

4.1. A typical result

The specimen is stretched under plane-strain tension by applying the boundary conditions defined in Eq.
(20). The initial aspect ratio of the specimen considered in this study is Lo/hy = 3 and the FE discretization
takes the form of 768 quadrilaterals with 16 elements in x; direction and 48 elements in x; direction (Fig. 1).
The initial thickness imperfection is given by Eq. (21), with &, = 0.42 x 1072, &, = 0.24 x 1072, and a wave
number p = 2.

The normalized nominal stress (onom/7o)—elongation (U/Ly) response is presented in Fig. 4. This curve
indicates that the normalized nominal stress reaches a maximum around U/Ly, = 0.055, and then begins to
decrease. The deformation patterns at various normalized elongations are shown in Fig. 5. Fig. 5a shows
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Normalized Nominal Stress

Normalized Elongation

Fig. 4. Normalized nominal stress—elongation curve.

the deformed mesh after the maximum normalized nominal stress, at U/Ly = 0.07, where a very light
diffuse neck has formed. Evidence of shear bands that cross at the specimen centre can be observed in Fig.
5b, where U/Ly = 0.10, but they are most fully developed at U/L, = 0.13 as shown in Fig. 5c.

A more quantitative representation of shear band development is presented in Fig. 6, where contours of
true strain (in the loading direction) are plotted versus the normalized elongation. Fig. 6a corresponds to
Fig. 5a, where U/Ly = 0.07. Although the strain pattern is slightly nonuniform, an inhomogeneity corre-
sponding to the early stages of necking can be observed since the highest strains are at the centre of the
specimen.

A shear band pattern is evident in Fig. 6b, which shows contour plots at U/L, = 0.10. Although little
additional straining has occurred towards the end of the specimen as compared to Fig. 6a, strain has began
to concentrate in a well-defined band (represented by the 0.21 contour) nearer the specimen centre.

Fig. 6¢ shows the fully developed shear band at U/Ly, = 0.13. The strains in the shear band exceed 0.4
although the overall normalized extension is U/Ly = 0.13. While there is very little deformation occurring
outside the band, a large amount of shear is accumulating within the well-defined shear band (represented
by the 0.4 contour).

4.2. Mesh sensitivity

Shear band localization phenomena are notorious for sometimes exhibiting a pathological mesh sensi-
tivity. However, as demonstrated by Needleman (1988), this is not necessarily the case for our type of
simulations since the inherent mesh sensitivity of the rate-independent theory can be eliminated by a rate-
dependent formulation such as the one in this study. Nevertheless, the selection of proper mesh does require
proper attention.

Mesh sensitivity analyses were first performed by keeping the element aspect ratio constant and in-
creasing the element number in the necking area which is considered as the first 1/3 of the specimen as
defined in Fig. 7. Thus, all mesh sizes described in this section refer to the size of the mesh at the necking
area. For the first set of analyses, simulations were performed with meshes consisting of 12 x 12, 16 x 16
and 24 x 24 elements, respectively.

The numerical results show that, the overall stress—strain curves for all three meshes are nearly identical
in terms of strain hardening and saturation (Fig. 8). Once softening occurs, finer meshes demonstrate
slightly stronger softening effects. Fig. 9 presents contours of true strain (in the loading direction) for the
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(a) U/L,=0.07

|

(b) U/L,=0.10

(¢) U/L,=0.13

Fig. 5. Deformed meshes at various elongation levels.

three meshes considered at U/Ly = 0.13. Our results show that the initiation and propagation of shear
bands are not sensitive to the meshes considered; for all cases, localized deformation in the form of a shear
band passing through the centre of the specimen is formed at approximately 47° to the loading direction.
Although it does not have a significant impact on localized deformation, it is also observed that, the finer
the mesh, the narrower and stronger the shear band.

We next present mesh sensitivity analyses where the element aspect ratio a/b (where a and b are the
lengths of an element in the x; and x; directions, respectively, in the necking area) has been changed. Fig. 10
presents the nominal stress—normalized elongation curves for simulations with element aspect ratios of 2.0
(32 elements in the x3 direction, 16 elements in the x; direction), 1.0 (24 elements each in the x; and x;
directions), and 0.5 (16 elements in the x; direction, 32 elements in the x; direction), respectively. Once
again, all curves are nearly the same with regard to strain hardening and saturation. After saturation, a
stronger softening effect is observed for simulations having smaller element aspect ratios.

The deformation patterns for the above three simulations are compared in Fig. 11 where contours of true
strain (in the loading direction) are plotted at U /Ly = 0.13. The simulations show that the shear bands
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Fig. 6. True strain at various elongation levels.

predicted with element aspect ratios 0.5 and 1.0 are very similar. However, even though the simulations
with an element aspect ratio of 2.0 employed more elements than the simulation with an element ratio of
1.0, the shear band predicted with an element aspect ratio of 1.0 is significantly sharper and narrower than
the shear band obtained with an element aspect ratio of 2.0. This difference can be explained by the nature
of the meshes used in this paper. As described in Section 3.1, our FE meshes are composed of crossed
triangles that can resolve narrow shear bands in four directions. If the mesh is not oriented so that one of
these directions coincides with the critical orientation for shear bands, then localization can significantly be
delayed or entirely suppressed (Tvergaard et al., 1981).

Based on the above observations, it was decided that the relatively fine mesh (16 x 16 elements in the
necking area) with an element aspect ratio of 1 (Fig. 1) would be sufficiently accurate to capture the key
features of localized deformation. Thus, this mesh will be used in the simulations discussed henceforth.
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Fig. 7. The necking area considered in mesh sensitivity analyses.
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Fig. 8. Nominal stress—normalized elongation curves for three different meshes (at the necking area) with constant element aspect ratio.

4.3. The effect of texture evolution

To investigate the effect of texture evolution on the localization modes, the simulation described above
was performed once more, but with texture evolution excluded from the polycrystal model. To prevent
texture evolution, the stretching and rotation of the lattice vectors (s(,), m,) as described by Eq. (5) were
excluded in the numerical analysis. From now on, the model including texture evolution will be referred to
as “ITE”, while that excluding texture evolution will be referred to as “ETE”. Fig. 12 shows that the
normalized nominal stress—elongation curves for the two models begin to differ after the maximum nor-
malized nominal stress is attained. In the ITE model, the nominal stress drops faster compared to the ETE
model.

The importance of including texture evolution can be seen by comparing Fig. 5c to the deformed mesh of
Fig. 13, which results from the ETE simulation at U/Ly, = 0.13. As discussed earlier, shear bands are fully
developed at this stage of the simulation with the ITE model. However, there are no shear bands formed in
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Fig. 9. Contours of true strain (in loading direction) with (a) 12 x 12 elements, (b) 16 x 16 elements and (c) 24 x 24 elements at

the ETE model although the initiation of necking is visible. With further loading, strain localizes pro-
gressively in the neck area without any formation of shear bands.

Pierce et al. (1982) have shown that, for single crystals, necking causes nonuniform lattice rotations and
“geometrical softening” that lead to localized shearing. In their work, they have defined ‘“‘geometrical
softening” as the increase in the resolved shear stress on the slip system responsible for the concentrated
straining. We shall adopt this terminology. As the ETE model does not include texture evolution, necking
cannot cause lattice rotations that produce “geometrical softening”. As a result, although a neck is formed,
it cannot act as a triggering mechanism for shear localization in the form of a band.

A comparison between the texture evolutions at the centre of the specimen and at the end of the
specimen (away from the neck) is shown in Fig. 14 where the pole figures related to the rolling (x;) and
transverse (x,) directions are given. Fig. 14a and b correspond to Fig. 6a (U/Ly = 0.07), where initial
textures have evolved to a slightly different distribution. However, Fig. 14c and d (corresponding to Fig. 6c;
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Fig. 10. Nominal stress—normalized elongation curves for three different meshes (at the necking area) with element aspect ratios of 0.5,
1.0 and 2.0.

where U/Ly = 0.13) show that, in the shear band the texture has become much sharper than the texture at
the end of the specimen. Texture evolutions for two different elements in the shear band (Fig. 5c) are
compared in Fig. 15a and b, which present pole figures related to the rolling (x;) and normal (x;) directions
for the elements 1 and 2 identified in Fig. 6¢, respectively, when U/Ly, = 0.13. The differences between these
two textures suggest that the deformation modes are different at the selected two elements. Element 1 is
undergoing tensile stretching while element 2 is undergoing both shearing and tensile stretching.

4.4. The effect of slip rate sensitivity m

The effect of slip rate sensitivity m on the constitutive response has been investigated by comparing
simulations with m = 0.002, 0.01 and 0.02 respectively. Fig. 16 compares the normalized nominal stress—
elongation curves for these simulations. It can be seen that the normalized nominal stress response increases
with increasing m value. It is also noteworthy to mention that, for increasing m, the nominal stress falls
much slower from its maximum.

Fig. 17 presents the deformed meshes for the simulation where the rate sensitivity m was taken as 0.02.
The normalized extension in Fig. 17a is U/Ly = 0.11 and the deformation pattern is quite uniform. Evi-
dence of the initiation of necking can be seen in Fig. 17b where U/Ly = 0.16 and in Fig. 17¢ where
U/L, = 0.23, the neck is clearly visible. Note that shear bands were fully developed at U /L, = 0.13 (Fig. 5c)
where the strain-rate sensitivity m was taken as 0.002.

Our results show that when the rate sensitivity was increased, not only does the ductility of the metal
increases, but when the rate sensitivity becomes sufficiently high enough (e.g. m > 0.01), the localization
mode changes from shear bands to necking. This change in the mode of localization was an expected result
considering the results of Section 4.3 where the importance of texture evolution on the development of
shear bands was clearly demonstrated. Previous studies (Canova et al., 1988) have shown that the rate of
texture evolution in tension is decreased by the increase in the slip rate sensitivity. Harren et al. (1989b)
have shown for simple shear that, when strain-rate sensitivity m was high enough (0.5 for their material),
there was almost no tendency for textures to form. This can be explained by the near vanishing of the
plastic spin WP defined in the second part of Eq. (4) with increasing m. In our simulations, the evolution of
texture does not vanish completely when m is taken as 0.02, but the “geometric softening’” produced by this
texture evolution is not sufficiently high to trigger shear band formation.
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Fig. 11. Contours of true strain (in loading direction) with element aspect ratios of (a) 0.5, (b) 1.0 and (c) 2.0 at U/L, = 0.13.

The normalized stress o (o/0omax, Where g refers to the physical component of the true stress in the
loading direction calculated at the end section of the specimen, x; = Ly)—elongation curve is plotted in Fig.
18. It can be seen that ¢ reaches a maximum around U/Ly, = 0.09 (as shown by point B) and then starts to
decrease. The normalized elongation (U/Ly = 0.058) where the maximum nominal stress was attained is
represented by point A.

The evolution of the neck-section area k together with the principal logarithmic strain & (in the
rolling direction) at the centre of the specimen is also included in Fig. 18. Our results show that, the
attainment of the maximum stress at U/Ly, = 0.09 identifies the onset of necking, since U/Ly = 0.09
corresponds to the tapering off of the ¢ and x. This conclusion was also reached for different appli-
cations of phenomenological plasticity (Tugcu and Neale, 1988; Tugcu, 1991), where their results
showed that the attainment of a maximum stress at the end of a round tensile specimen identified the
onset of necking.
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Fig. 12. Comparison between the normalized nominal stress—elongation curves for simulations with and without texture evolution.
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Fig. 13. Deformed mesh at U/L, = 0.13 for the case where texture evolution is excluded.

4.5. The effect of strain hardening

The effect of strain hardening on the formation of shear bands was investigated by comparing the results
obtained from simulations with three different values of asymptotic hardening rates; A;/7o = 0, 0.02 and 0.2.
Fig. 19 presents the true stress—true strain curves (for a specimen without imperfection) for these three
cases. It can be seen that when 4,/7y > 0 there is strain hardening and when /;/7y = 0 there is saturation.
The normalized nominal stress—elongation curves for these three cases are compared in Fig. 20.

The only difference in the normalized nominal stress—elongation curves for the simulations with
hs/t0 = 0 and 0.02 is that the normalized nominal stress drops more rapidly when 4/t = 0. Nevertheless,
shear bands are still predicted for both cases. However, no shear bands were predicted when the strain
hardening rate was taken relatively high (A;/79 = 0.2) and the specimen deformed with the strain localizing
progressively in the neck.

5. Conclusion

A plane-strain crystal plasticity based FE model has been developed to simulate localization modes in
polycrystalline solids. The material response of a commercial aluminium alloy (AA3004-H19) was inves-
tigated under plane-strain tension.
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Fig. 14. (a) Texture distribution at the (a, ¢) end of the specimen, (b, d) centre of the specimen.
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Fig. 15. Texture evolution at element number (a) 1 and (b) 2.

Our simulations showed that localization occurs in two modes. In the first mode, a neck initiates and
deformation continues where the strain localizes progressively in this neck. For the rate-dependent analysis
considered, the onset of necking is defined by the attainment of the maximum stress at the end section of
the specimen, away from the neck. For the limiting case of a rate-independent analysis, this criterion re-
duces to the attainment of a maximum strain (which is the onset of elastic unloading) since for the rate-
independent analysis the attainment of maximum strain will also correspond to the attainment of the
maximum stress.

In the second localization mode, necking triggers the formation of shear bands. There are several factors
that contribute to the formation and prediction of shear bands such as texture evolution, strain-rate sen-
sitivity and strain hardening.
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Fig. 16. Normalized nominal stress—elongation curves for various values of the rate sensitivity m.
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Fig. 17. Deformed FE meshes at various elongation levels for the case where m = 0.02.

A significant mesh sensitivity effect was not observed on the overall stress response, nor for the initiation
and propagation of the localized deformations for those meshes where the element aspect ratios were kept
constant. Our results showed that the finer was the mesh, the narrower and sharper became the shear
bands. However, the element aspect ratio did affect the prediction of localized deformation; even though the
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same number of elements was used in both simulations, the shear band predicted with an element aspect
ratio of 0.5 was much sharper and narrower than the shear band predicted with an element aspect ratio of
2.0.

Texture evolution was shown to have a very important role in the prediction of shear bands. If texture
evolution is not included in the analysis, the “geometric softening” effect that leads to localized shearing
does not occur. As a result, shear band formation is precluded from the localization mode. Our simulations
have shown that shear bands were formed around an engineering strain of 10%. Although strong textures
are not expected to occur at 10% of strain, the evolution of texture at this strain level is still critical in the
prediction of shear bands. This effect of texture evolution also explains the inability of phenomenological
plasticity models with a smooth yield surface to predict shear bands at realistic strain levels (Tvergaard
et al., 1981).

It is well known that increasing the rate sensitivity increases the ductility as it will delay the formation of
nonuniform localization modes such as shear bands or necking. Furthermore, our simulations have shown
that, when the rate sensitivity was increased to certain values (corresponding to a decrease in the rate of
texture evolution), shear band formation was not only delayed, but it was completely precluded from the
localization mode since the resulting ““geometric softening’ was not strong enough to form shear bands.

Strain hardening is another important factor in the formation of shear bands. Our results have shown
that strain softening behaviour is not necessarily required to observe shear bands or other localized modes
of deformation. However, the rate of strain hardening plays a key role in the determination of the local-
ization mode. When a relatively high rate of strain hardening was considered, shear band formation was
completely precluded from the localization mode.
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